
xlearn_doc Documentation
Release 0.4.0

Chao Ma

May 09, 2019

Contents

1 A Quick Example 3

2 Link to the Other Helpful Resources 5

i

ii

xlearn_doc Documentation, Release 0.4.0

xLearn is a high-performance, easy-to-use, and scalable machine learning package, which can be used to solve large-
scale machine learning problems, especially for the problems on large-scale sparse data, which is very common in
scenes like CTR prediction and recommender system. In that case, if you are the user of liblinear, libfm, or libffm,
now xLearn is your another better choice. This is because xLearn handles all the models and features in these platforms
using an uniform way, and it provides better performance, ease-of-use, and scalability.

Contents 1

xlearn_doc Documentation, Release 0.4.0

2 Contents

CHAPTER 1

A Quick Example

This is a quick start tutorial showing snippets for you to quickly try out xLearn on a small demo dataset (Criteo CTR
prediction) for a binary classification task. In this example, the machine learning algorithm will predict that if current
user will click a specified online advertisment.

1.1 Installation

The easiest way to install xLearn Python package is to use pip. The following command will download the xLearn
source code, build and install python package on your locally machine:

sudo pip install xlearn

The installation process will take a while to complete, please wait with patience. After the installation, users can use
the following script in Python script to check whether the xLearn has been installed successfully:

>>> import xlearn as xl
>>> xl.hello()

You will see the following message if you installed xLearn successfully:

_
| |

__ _| | ___ __ _ _ __ _ __
\ \/ / | / _ \/ _` | '__| '_ \
> <| |___| __/ (_| | | | | | |

/_/______/___|__,_|_| |_| |_|

xLearn -- 0.44 Version --

If you meet any installation problem, or you want to build the latest code from Github, or you want to use the xLearn
command line API instead of the Python API, you can see how to build xLearn from source code in Installation Guide.

3

https://github.com/aksnzhy/xlearn
./install/index.html

xlearn_doc Documentation, Release 0.4.0

1.2 Python Demo

Here is a simple Python demo no how to use FFM algorithm of xLearn for solving a binary classification problem:

import xlearn as xl

Training task
ffm_model = xl.create_ffm() # Use field-aware factorization machine
→˓(ffm)
ffm_model.setTrain("./small_train.txt") # Set the path of training dataset
ffm_model.setValidate("./small_test.txt") # Set the path of validation dataset

Parameters:
0. task: binary classification
1. learning rate: 0.2
2. regular lambda: 0.002
3. evaluation metric: accuracy
param = {'task':'binary', 'lr':0.2, 'lambda':0.002, 'metric':'acc'}

Start to train
The trained model will be stored in model.out
ffm_model.fit(param, './model.out')

Prediction task
ffm_model.setTest("./small_test.txt") # Set the path of test dataset
ffm_model.setSigmoid() # Convert output to 0-1

Start to predict
The output result will be stored in output.txt
ffm_model.predict("./model.out", "./output.txt")

This example shows how to use field-aware factorization machines (FFM) to solve a simple binary classification
task. You can check out the demo data (small_train.txt and small_test.txt) from the path demo/
classification/criteo_ctr.

4 Chapter 1. A Quick Example

CHAPTER 2

Link to the Other Helpful Resources

2.1 Installation Guide

For now, xLearn can support both Linux, Mac OS X, and Windows. To install xLearn on Windows, please go to this
page. This page gives instructions on how to build and install the xLearn using pip and how to build xLearn from
source code on Linux and Mac OSX. No matter what way you choose, make sure that your OS has already installed
GCC or Clang (with the support of C++ 11) and CMake.

2.1.1 Install GCC or Clang

If you have already installed your C++ compiler before, you can skip this step.

• On Cygwin, run setup.exe and install gcc and binutils.

• On Debian/Ubuntu Linux, type the command:

sudo apt-get install gcc binutils

to install GCC (or Clang) by using:

sudo apt-get install clang

• On FreeBSD, type the following command to install Clang:

sudo pkg_add -r clang

• On Mac OS X, install XCode gets you Clang.

2.1.2 Install CMake

If you have already installed CMake before, you can skip this step.

• On Cygwin, run setup.exe and install cmake.

5

./install_windows.html
./install_windows.html

xlearn_doc Documentation, Release 0.4.0

• On Debian/Ubuntu Linux, type the command to install cmake:

sudo apt-get install cmake

• On FreeBSD, type the command:

sudo pkg_add -r cmake

On Mac OS X, if you have homebrew, you can use the command:

brew install cmake

or if you have MacPorts, run:

sudo port install cmake

You won’t want to have both Homebrew and MacPorts installed.

2.1.3 Install xLearn from Source Code

Building xLearn from source code consists two steps:

First, you need to build the executable files (xlearn_train and xlearn_predict), as well as the shared library
(libxlearn_api.so for Linux or libxlearn_api.dylib for Mac OSX) from the C++ code. After that, users
need to install the xLearn Python Package.

Build from Source Code

Users need to clone the code from github:

git clone https://github.com/aksnzhy/xlearn.git

cd xlearn
mkdir build
cd build
cmake ../
make

If the building is successful, users can find two executable files (xlearn_train and xlearn_predict) in the
build path. Users can test the installation by using the following command:

./run_example.sh

Install Python Package

Then, you can install the Python package through install-python.sh:

cd python-package
sudo ./install-python.sh

You can also test the Python package by using the following command:

cd ../
python test_python.py

6 Chapter 2. Link to the Other Helpful Resources

xlearn_doc Documentation, Release 0.4.0

One-Button Building

We have already write a script build.sh to do all the cumbersome work for users, and users can just use the folloing
commands:

git clone https://github.com/aksnzhy/xlearn.git

cd xlearn
sudo ./build.sh

You may be asked to input your password during installation.

2.1.4 Install xLearn from pip

The easiest way to install xLearn Python package is to use pip. The following command will download the xLearn
source code from pip and install Python package locally. You must make sure that you have already installed C++11
and CMake in your local machine:

sudo pip install xlearn

The installation process will take a while to complete. After that, you can type the following script in your python
shell to check whether the xLearn has been installed successfully:

>>> import xlearn as xl
>>> xl.hello()

You will see the following message if the installation is successful:

_
| |

__ _| | ___ __ _ _ __ _ __
\ \/ / | / _ \/ _` | '__| '_ \
> <| |___| __/ (_| | | | | | |

/_/______/___|__,_|_| |_| |_|

xLearn -- 0.44 Version --

2.1.5 Install R Package

The R package installation guide is coming soon.

2.2 xLearn Command Line Guide

Once you built xLearn from source code successfully, you can get two executable files (xlearn_train and
xlearn_predict) in your build directory. Now you can use these two executable files to perform training
and prediction tasks.

2.2. xLearn Command Line Guide 7

xlearn_doc Documentation, Release 0.4.0

2.2.1 Quick Start

Make sure that you are in the build directory of xLearn, and you can find the demo data small_test.txt and
small_train.txt in this directory. Now we can type the following command to train a model:

./xlearn_train ./small_train.txt

Here, we show a portion of the output in this task. Note that the loss value shown in your local machine could be
different with the following result:

[ACTION] Start to train ...
[------------] Epoch Train log_loss Time cost (sec)
[10%] 1 0.569292 0.00
[20%] 2 0.517142 0.00
[30%] 3 0.490124 0.00
[40%] 4 0.470445 0.00
[50%] 5 0.451919 0.00
[60%] 6 0.437888 0.00
[70%] 7 0.425603 0.00
[80%] 8 0.415573 0.00
[90%] 9 0.405933 0.00
[100%] 10 0.396388 0.00
[ACTION] Start to save model ...
[------------] Model file: ./small_train.txt.model

By default, xLearn uses the logistic regression (LR) to train the model within 10 epoch.

After that, we can see that a new file called small_train.txt.model has been generated in the current directory.
This file stores the trained model checkpoint, and we can use this model file to make a prediction in the future:

./xlearn_predict ./small_test.txt ./small_train.txt.model

After that, we can get a new file called small_test.txt.out in the current directory. This is the output of
xLearn’s prediction. Here we show the first five lines of this output by using the following command:

head -n 5 ./small_test.txt.out

-1.9872
-0.0707959
-0.456214
-0.170811
-1.28986

These lines of data is the prediction score calculated for each example in the test set. The negative data represents the
negative example and positive data represents the positive example. In xLearn, you can convert the score to (0-1) by
using --sigmoid option, and also you can convert your result to binary result (0 and 1) by using --sign option:

./xlearn_predict ./small_test.txt ./small_train.txt.model --sigmoid
head -n 5 ./small_test.txt.out

0.120553
0.482308
0.387884
0.457401
0.215877

./xlearn_predict ./small_test.txt ./small_train.txt.model --sign

(continues on next page)

8 Chapter 2. Link to the Other Helpful Resources

xlearn_doc Documentation, Release 0.4.0

(continued from previous page)

head -n 5 ./small_test.txt.out

0
0
0
0
0

2.2.2 Model Output

Users may want to generate different model files (by using different hyper-parameters), and hence users can set
the name and path of the model checkpoint file by using -m option. By default, the name of the model file is
training_data_name + .model:

./xlearn_train ./small_train.txt -m new_model

Also, users can save the model in TXT format by using -t option. For example:

./xlearn_train ./small_train.txt -t model.txt

After that, we can get a new file called model.txt, which stores the trained model in TXT format:

head -n 5 ./model.txt

-0.688182
0.458082
0
0
0

For the linear and bias term, we store each parameter in each line. For FM and FFM, we store each vector of the latent
factor in each line. For example:

Linear:

bias: 0
i_0: 0
i_1: 0
i_2: 0
i_3: 0

FM:

bias: 0
i_0: 0
i_1: 0
i_2: 0
i_3: 0
v_0: 5.61937e-06 0.0212581 0.150338 0.222903
v_1: 0.241989 0.0474224 0.128744 0.0995021
v_2: 0.0657265 0.185878 0.0223869 0.140097
v_3: 0.145557 0.202392 0.14798 0.127928

FFM:

2.2. xLearn Command Line Guide 9

xlearn_doc Documentation, Release 0.4.0

bias: 0
i_0: 0
i_1: 0
i_2: 0
i_3: 0
v_0_0: 5.61937e-06 0.0212581 0.150338 0.222903
v_0_1: 0.241989 0.0474224 0.128744 0.0995021
v_0_2: 0.0657265 0.185878 0.0223869 0.140097
v_0_3: 0.145557 0.202392 0.14798 0.127928
v_1_0: 0.219158 0.248771 0.181553 0.241653
v_1_1: 0.0742756 0.106513 0.224874 0.16325
v_1_2: 0.225384 0.240383 0.0411782 0.214497
v_1_3: 0.226711 0.0735065 0.234061 0.103661
v_2_0: 0.0771142 0.128723 0.0988574 0.197446
v_2_1: 0.172285 0.136068 0.148102 0.0234075
v_2_2: 0.152371 0.108065 0.149887 0.211232
v_2_3: 0.123096 0.193212 0.0179155 0.0479647
v_3_0: 0.055902 0.195092 0.0209918 0.0453358
v_3_1: 0.154174 0.144785 0.184828 0.0785329
v_3_2: 0.109711 0.102996 0.227222 0.248076
v_3_3: 0.144264 0.0409806 0.17463 0.083712

2.2.3 Online Learning

xLearn can supoort online learning, which can train new data based on the pre-trained model. User can use the -pre
option to specify the file path of pre-trained model. For example:

./xlearn_train ./small_train.txt -s 0 -pre ./pre_model

Note that, xLearn can only uses the binary model, not the TXT model.

2.2.4 Prediction Output

Users can also set -o option to specify the prediction output file. For example:

./xlearn_predict ./small_test.txt ./small_train.txt.model -o output.txt
head -n 5 ./output.txt

-2.01192
-0.0657416
-0.456185
-0.170979
-1.28849

By default, the name of the output file is test_data_name + .out .

2.2.5 Choose Machine Learning Algorithm

For now, xLearn can support three different machine learning algorithms, including linear model, factorization ma-
chine (FM), and field-aware factorization machine (FFM).

Users can choose different machine learning algorithms by using -s option:

10 Chapter 2. Link to the Other Helpful Resources

xlearn_doc Documentation, Release 0.4.0

-s <type> : Type of machine learning model (default 0)
for classification task:

0 -- linear model (GLM)
1 -- factorization machines (FM)
2 -- field-aware factorization machines (FFM)

for regression task:
3 -- linear model (GLM)
4 -- factorization machines (FM)
5 -- field-aware factorization machines (FFM)

For LR and FM, the input data format can be CSV or libsvm. For FFM, the input data should be the libffm format:

libsvm format:

label index_1:value_1 index_2:value_2 ... index_n:value_n

CSV format:

label value_1 value_2 .. value_n

libffm format:

label field_1:index_1:value_1 field_2:index_2:value_2 ...

xLearn can also use , as the splitor in file. For example:

libsvm format:

label,index_1:value_1,index_2:value_2 ... index_n:value_n

CSV format:

label,value_1,value_2 .. value_n

libffm format:

label,field_1:index_1:value_1,field_2:index_2:value_2 ...

Note that, if the csv file doesn’t contain the label y, the user should add a placeholder to the dataset by themselves
(Also in test data). Otherwise, xLearn will treat the first element as the label y.

Users can also give a libffm file to LR and FM task. At that time, xLearn will treat this data as libsvm format.
The following command shows how to use different machine learning algorithms to solve the binary classification
problem:

./xlearn_train ./small_train.txt -s 0 # Linear model (GLM)

./xlearn_train ./small_train.txt -s 1 # Factorization machine (FM)

./xlearn_train ./small_train.txt -s 2 # Field-awre factorization machine (FFM)

2.2.6 Set Validation Dataset

A validation dataset is used to tune the hyper-parameters of a machine learning model. In xLearn, users can use -v
option to set the validation dataset. For example:

./xlearn_train ./small_train.txt -v ./small_test.txt

2.2. xLearn Command Line Guide 11

xlearn_doc Documentation, Release 0.4.0

A portion of xLearn’s output:

Epoch Train log_loss Test log_loss Time cost (sec)
1 0.575049 0.530560 0.00
2 0.517496 0.537741 0.00
3 0.488428 0.527205 0.00
4 0.469010 0.538175 0.00
5 0.452817 0.537245 0.00
6 0.438929 0.536588 0.00
7 0.423491 0.532349 0.00
8 0.416492 0.541107 0.00
9 0.404554 0.546218 0.00

Here we can see that the training loss continuously goes down. But the validation loss (test loss) goes down first,
and then goes up. This is because the model has already overfitted current training dataset. By default, xLearn will
calculate the validation loss in each epoch, while users can also set different evaluation metrics by using -x option.
For classification problems, the metric can be: acc (accuracy), prec (precision), f1 (f1 score), auc (AUC score).
For example:

./xlearn_train ./small_train.txt -v ./small_test.txt -x acc

./xlearn_train ./small_train.txt -v ./small_test.txt -x prec

./xlearn_train ./small_train.txt -v ./small_test.txt -x f1

./xlearn_train ./small_train.txt -v ./small_test.txt -x auc

For regression problems, the metric can be mae, mape, and rmsd (rmse). For example:

cd demo/house_price/
../../xlearn_train ./house_price_train.txt -s 3 -x rmse --cv
../../xlearn_train ./house_price_train.txt -s 3 -x rmsd --cv

Note that, in the above example we use cross-validation by using --cv option, which will be introduced in the next
section.

2.2.7 Cross-Validation

Cross-validation, sometimes called rotation estimation, is a model validation technique for assessing how the results
of a statistical analysis will generalize to an independent dataset. In xLearn, users can use the --cv option to use this
technique. For example:

./xlearn_train ./small_train.txt --cv

On default, xLearn uses 3-folds cross validation, and users can set the number of fold by using -f option:

./xlearn_train ./small_train.txt -f 5 --cv

Here we set the number of folds to 5. The xLearn will calculate the average validation loss at the end of its output
message:

...
[------------] Average log_loss: 0.549417
[ACTION] Finish Cross-Validation
[ACTION] Clear the xLearn environment ...
[------------] Total time cost: 0.03 (sec)

12 Chapter 2. Link to the Other Helpful Resources

xlearn_doc Documentation, Release 0.4.0

2.2.8 Choose Optimization Method

In xLearn, users can choose different optimization methods by using -p option. For now, xLearn can support sgd,
adagrad, and ftrl method. By default, xLearn uses the adagrad method. For example:

./xlearn_train ./small_train.txt -p sgd

./xlearn_train ./small_train.txt -p adagrad

./xlearn_train ./small_train.txt -p ftrl

Compared to traditional sgd method, adagrad adapts the learning rate to the parameters, performing larger updates
for infrequent and smaller updates for frequent parameters. For this reason, it is well-suited for dealing with sparse
data. In addition, sgd is more sensitive to the learning rate compared with adagrad.

FTRL (Follow-the-Regularized-Leader) is also a famous method that has been widely used in the large-scale sparse
problem. To use FTRL, users need to tune more hyper-parameters compared with sgd and adagrad.

2.2.9 Hyper-parameter Tuning

In machine learning, a hyper-parameter is a parameter whose value is set before the learning process begins. By
contrast, the value of other parameters is derived via training. Hyper-parameter tuning is the problem of choosing a
set of optimal hyper-parameters for a learning algorithm.

First, the learning rate is one of the most important hyper-parameters used in machine learning. By default, this
value is set to 0.2 in xLearn, and we can tune this value by using -r option:

./xlearn_train ./small_train.txt -v ./small_test.txt -r 0.1

./xlearn_train ./small_train.txt -v ./small_test.txt -r 0.5

./xlearn_train ./small_train.txt -v ./small_test.txt -r 0.01

We can also use the -b option to perform regularization. By default, xLearn uses L2 regularization, and the regu-
lar_lambda has been set to 0.00002:

./xlearn_train ./small_train.txt -v ./small_test.txt -r 0.1 -b 0.001

./xlearn_train ./small_train.txt -v ./small_test.txt -r 0.1 -b 0.002

./xlearn_train ./small_train.txt -v ./small_test.txt -r 0.1 -b 0.01

For the FTRLmethod, we also need to tune another four hyper-parameters, including -alpha, -beta, -lambda_1,
and -lambda_2. For example:

./xlearn_train ./small_train.txt -p ftrl -alpha 0.002 -beta 0.8 -lambda_1 0.001 -
→˓lambda_2 1.0

For FM and FFM, users also need to set the size of latent factor by using -k option. By default, xLearn uses 4 for
this value:

./xlearn_train ./small_train.txt -s 1 -v ./small_test.txt -k 2

./xlearn_train ./small_train.txt -s 1 -v ./small_test.txt -k 4

./xlearn_train ./small_train.txt -s 1 -v ./small_test.txt -k 5

./xlearn_train ./small_train.txt -s 1 -v ./small_test.txt -k 8

xLearn uses SSE instruction to accelerate vector operation, and hence the time cost for k=2 and k=4 are the same.

For FM and FFM, users can also set the hyper-parameter -u for scalling model initialization. By default, this value is
0.66:

2.2. xLearn Command Line Guide 13

xlearn_doc Documentation, Release 0.4.0

./xlearn_train ./small_train.txt -s 1 -v ./small_test.txt -u 0.80

./xlearn_train ./small_train.txt -s 1 -v ./small_test.txt -u 0.40

./xlearn_train ./small_train.txt -s 1 -v ./small_test.txt -u 0.10

2.2.10 Set Epoch Number and Early-Stopping

For machine learning tasks, one epoch consists of one full training cycle on the training set. In xLearn, users can set
the number of epoch for training by using -e option:

./xlearn_train ./small_train.txt -e 3

./xlearn_train ./small_train.txt -e 5

./xlearn_train ./small_train.txt -e 10

If you set the validation data, xLearn will perform early-stopping by default. For example:

./xlearn_train ./small_train.txt -s 2 -v ./small_test.txt -e 10

Here, we set epoch number to 10, but xLearn stopped at epoch 7 because we get the best model at that epoch (you
may get different a stopping number on your local machine):

...
[ACTION] Early-stopping at epoch 7
[ACTION] Start to save model ...

Users can set the window size for early stopping by using -sw option:

./xlearn_train ./small_train.txt -e 10 -v ./small_test.txt -sw 3

Users can disable early-stopping by using --dis-es option:

./xlearn_train ./small_train.txt -s 2 -v ./small_test.txt -e 10 --dis-es

At this time, xLearn performed completed 10 epoch for training.

By default, xLearn will use the metric value to choose the best epoch if user has set the metric (-x). If not, xLearn
uses the test_loss to choose the best epoch.

2.2.11 Lock-Free Learning

By default, xLearn performs Hogwild! lock-free learning, which takes advantages of multiple cores of modern CPU
to accelerate training task. But lock-free training is non-deterministic. For example, if we run the following command
multiple times, we may get different loss value at each epoch:

./xlearn_train ./small_train.txt

The 1st time: 0.396352
The 2nd time: 0.396119
The 3nd time: 0.396187
...

Users can set the number of thread for xLearn by using -nthread option:

./xlearn_train ./small_train.txt -nthread 2

If you don’t set this option, xLearn uses all of the CPU cores by default. xLearn will show the number of threads:

14 Chapter 2. Link to the Other Helpful Resources

xlearn_doc Documentation, Release 0.4.0

[------------] xLearn uses 2 threads for training task.
[ACTION] Read Problem ...

Users can disable lock-free training by using --dis-lock-free:

./xlearn_train ./small_train.txt --dis-lock-free

In thie time, our result are determinnistic:

The 1st time: 0.396372
The 2nd time: 0.396372
The 3nd time: 0.396372

The disadvantage of --dis-lock-free is that it is much slower than lock-free training.

2.2.12 Instance-wise Normalization

For FM and FFM, xLearn uses instance-wise normalizarion by default. In some scenes like CTR prediction, this
technique is very useful. But sometimes it hurts model performance. Users can disable instance-wise normalization
by using --no-norm option:

./xlearn_train ./small_train.txt -s 1 -v ./small_test.txt --no-norm

Note that if you use Instance-wise Normalization in training process, you also need to use the meachnism in prediction
process.

2.2.13 Quiet Training

When using --quiet option, xLearn will not calculate any evaluation information during the training, and it will
just train the model quietly:

./xlearn_train ./small_train.txt --quiet

In this way, xLearn can accelerate its training speed significantly.

xLearn can also support Python API, and we will introduce it in the next section.

2.3 xLearn Python Package Guide

xLearn supports easy-to-use Python API for users. Once you install the xLearn Python package successfully, you can
try it. Type python in your shell and use the following Python code to check your installation:

import xlearn as xl
xl.hello()

If you install xLearn Python package successfully, you will see:

_
| |

__ _| | ___ __ _ _ __ _ __
\ \/ / | / _ \/ _` | '__| '_ \

(continues on next page)

2.3. xLearn Python Package Guide 15

xlearn_doc Documentation, Release 0.4.0

(continued from previous page)

> <| |___| __/ (_| | | | | | |
/_/______/___|__,_|_| |_| |_|

xLearn -- 0.44 Version --

2.3.1 Quick Start

Here is a simple Python demo to show that how to use xLearn python API. You can checkout the demo data
(small_train.txt and small_test.txt) from the path demo/classification/criteo_ctr.

import xlearn as xl

Training task
ffm_model = xl.create_ffm() # Use field-aware factorization machine
→˓(ffm)
ffm_model.setTrain("./small_train.txt") # Path of training data

param:
0. task: binary classification
1. learning rate : 0.2
2. regular lambda : 0.002
param = {'task':'binary', 'lr':0.2, 'lambda':0.002}

Train model
ffm_model.fit(param, "./model.out")

A portion of the xLearn’s output:

...
[ACTION] Start to train ...
[------------] Epoch Train log_loss Time cost (sec)
[10%] 1 0.595881 0.00
[20%] 2 0.538845 0.00
[30%] 3 0.520051 0.00
[40%] 4 0.504366 0.00
[50%] 5 0.492811 0.00
[60%] 6 0.483286 0.00
[70%] 7 0.472567 0.00
[80%] 8 0.465035 0.00
[90%] 9 0.457047 0.00
[100%] 10 0.448725 0.00
[ACTION] Start to save model ...

In this example, xLearn uses field-aware factorization machines (ffm) for solving a binary classification task. If you
want train a model for regression task, you can reset the task parameter to reg:

param = {'task':'reg', 'lr':0.2, 'lambda':0.002}

We can see that a new file called model.out has been generated in the current directory. This file stores the trained
model checkpoint, and we can use this model file to make a prediction in the future:

ffm_model.setTest("./small_test.txt")
ffm_model.predict("./model.out", "./output.txt")

16 Chapter 2. Link to the Other Helpful Resources

xlearn_doc Documentation, Release 0.4.0

After we run this Python code, we can get a new file called output.txt in current directory. This is output predic-
tion. Here we show the first five lines of this output by using the following command:

head -n 5 ./output.txt

-1.58631
-0.393496
-0.638334
-0.38465
-1.15343

These lines of data are the prediction score calculated for each example in the test set. The negative data represents
the negative example and positive data represents the positive example. In xLearn, you can convert the score to (0-1)
by using setSigmoid() method:

ffm_model.setSigmoid()
ffm_model.setTest("./small_test.txt")
ffm_model.predict("./model.out", "./output.txt")

and then we can get the result

head -n 5 ./output.txt

0.174698
0.413642
0.353551
0.414588
0.250373

We can also convert the score to binary result (0 and 1) by using setSign() method:

ffm_model.setSign()
ffm_model.setTest("./small_test.txt")
ffm_model.predict("./model.out", "./output.txt")

and then we can get the result

head -n 5 ./output.txt

0
0
0
0
0

2.3.2 Model Output

Also, users can save the model in TXT format by using setTXTModel() method. For example:

ffm_model.setTXTModel("./model.txt")
ffm_model.fit(param, "./model.out")

After that, we get a new file called model.txt, which stores the trained model in TXT format:

head -n 5 ./model.txt

(continues on next page)

2.3. xLearn Python Package Guide 17

xlearn_doc Documentation, Release 0.4.0

(continued from previous page)

-1.041
0.31609
0
0
0

For the linear and bias term, we store each parameter in each line. For FM and FFM, we store each vector of the latent
factor in each line. For example:

Linear:

bias: 0
i_0: 0
i_1: 0
i_2: 0
i_3: 0

FM:

bias: 0
i_0: 0
i_1: 0
i_2: 0
i_3: 0
v_0: 5.61937e-06 0.0212581 0.150338 0.222903
v_1: 0.241989 0.0474224 0.128744 0.0995021
v_2: 0.0657265 0.185878 0.0223869 0.140097
v_3: 0.145557 0.202392 0.14798 0.127928

FFM:

bias: 0
i_0: 0
i_1: 0
i_2: 0
i_3: 0
v_0_0: 5.61937e-06 0.0212581 0.150338 0.222903
v_0_1: 0.241989 0.0474224 0.128744 0.0995021
v_0_2: 0.0657265 0.185878 0.0223869 0.140097
v_0_3: 0.145557 0.202392 0.14798 0.127928
v_1_0: 0.219158 0.248771 0.181553 0.241653
v_1_1: 0.0742756 0.106513 0.224874 0.16325
v_1_2: 0.225384 0.240383 0.0411782 0.214497
v_1_3: 0.226711 0.0735065 0.234061 0.103661
v_2_0: 0.0771142 0.128723 0.0988574 0.197446
v_2_1: 0.172285 0.136068 0.148102 0.0234075
v_2_2: 0.152371 0.108065 0.149887 0.211232
v_2_3: 0.123096 0.193212 0.0179155 0.0479647
v_3_0: 0.055902 0.195092 0.0209918 0.0453358
v_3_1: 0.154174 0.144785 0.184828 0.0785329
v_3_2: 0.109711 0.102996 0.227222 0.248076
v_3_3: 0.144264 0.0409806 0.17463 0.083712

18 Chapter 2. Link to the Other Helpful Resources

xlearn_doc Documentation, Release 0.4.0

2.3.3 Online Learning

xLearn can supoort online learning, which can train new data based on the pre-trained model. User can use the
setPreModel API to specify the file path of pre-trained model. For example:

import xlearn as xl

ffm_model = xl.create_ffm()
ffm_model.setTrain("./small_train.txt")
ffm_model.setValidate("./small_test.txt")
ffm_model.setPreModel("./pre_model")
param = {'task':'binary', 'lr':0.2, 'lambda':0.002}

ffm_model.fit(param, "./model.out")

Note that, xLearn can only uses the binary model, not the TXT model.

2.3.4 Choose Machine Learning Algorithm

For now, xLearn can support three different machine learning algorithms, including linear model, factorization ma-
chine (FM), and field-aware factorization machine (FFM):

import xlearn as xl

ffm_model = xl.create_ffm()
fm_model = xl.create_fm()
lr_model = xl.create_linear()

For LR and FM, the input data format can be CSV or libsvm. For FFM, the input data should be the libffm format:

libsvm format:

label index_1:value_1 index_2:value_2 ... index_n:value_n

CSV format:

value_1 value_2 .. value_n label

libffm format:

label field_1:index_1:value_1 field_2:index_2:value_2 ...

xLearn can also use , as the splitor in file. For example:

libsvm format:

label,index_1:value_1,index_2:value_2 ... index_n:value_n

CSV format:

label,value_1,value_2 .. value_n

libffm format:

label,field_1:index_1:value_1,field_2:index_2:value_2 ...

2.3. xLearn Python Package Guide 19

xlearn_doc Documentation, Release 0.4.0

Note that, if the csv file doesn’t contain the label y, user should add a placeholder to the dataset by themselves
(Also in test data). Otherwise, xLearn will treat the first element as the label y.

In addtion, users can also give a libffm file to LR and FM task. At that time, xLearn will treat this data as libsvm
format.

2.3.5 Set Validation Dataset

A validation dataset is used to tune the hyper-parameters of a machine learning model. In xLearn, users can use
setValdiate() API to set the validation dataset. For example:

import xlearn as xl

ffm_model = xl.create_ffm()
ffm_model.setTrain("./small_train.txt")
ffm_model.setValidate("./small_test.txt")
param = {'task':'binary', 'lr':0.2, 'lambda':0.002}

ffm_model.fit(param, "./model.out")

A portion of xLearn’s output:

[ACTION] Start to train ...
[------------] Epoch Train log_loss Test log_loss Time cost (sec)
[10%] 1 0.589475 0.535867 0.00
[20%] 2 0.540977 0.546504 0.00
[30%] 3 0.521881 0.531474 0.00
[40%] 4 0.507194 0.530958 0.00
[50%] 5 0.495460 0.530627 0.00
[60%] 6 0.483910 0.533307 0.00
[70%] 7 0.470661 0.527650 0.00
[80%] 8 0.465455 0.532556 0.00
[90%] 9 0.455787 0.538841 0.00
[ACTION] Early-stopping at epoch 7

goes down first, and then goes up. This is because the model has already overfitted current training dataset. By default,
xLearn will calculate the validation loss in each epoch, while users can also set different evaluation metrics by using
-x option. For classification problems, the metric can be : acc (accuracy), prec (precision), f1 (f1 score), and auc
(AUC score). For example:

param = {'task':'binary', 'lr':0.2, 'lambda':0.002, 'metric': 'acc'}
param = {'task':'binary', 'lr':0.2, 'lambda':0.002, 'metric': 'prec'}
param = {'task':'binary', 'lr':0.2, 'lambda':0.002, 'metric': 'f1'}
param = {'task':'binary', 'lr':0.2, 'lambda':0.002, 'metric': 'auc'}

For regression problems, the metric can be mae, mape, and rmsd (rmse). For example:

param = {'task':'reg', 'lr':0.2, 'lambda':0.002, 'metric': 'rmse'}
param = {'task':'reg', 'lr':0.2, 'lambda':0.002, 'metric': 'mae'}
param = {'task':'reg', 'lr':0.2, 'lambda':0.002, 'metric': 'mape'}

2.3.6 Cross-Validation

Cross-validation, sometimes called rotation estimation, is a model validation technique for assessing how the results
of a statistical analysis will generalize to an independent dataset. In xLearn, users can use the cv() API to use this
technique. For example:

20 Chapter 2. Link to the Other Helpful Resources

xlearn_doc Documentation, Release 0.4.0

import xlearn as xl

ffm_model = xl.create_ffm()
ffm_model.setTrain("./small_train.txt")
param = {'task':'binary', 'lr':0.2, 'lambda':0.002}

ffm_model.cv(param)

On default, xLearn uses 3-folds cross validation, and users can set the number of fold by using the fold parameter:

import xlearn as xl

ffm_model = xl.create_ffm()
ffm_model.setTrain("./small_train.txt")
param = {'task':'binary', 'lr':0.2, 'lambda':0.002, 'fold':5}

ffm_model.cv(param)

Here we set the number of folds to 5. The xLearn will calculate the average validation loss at the end of its output
message:

[------------] Average log_loss: 0.549758
[ACTION] Finish Cross-Validation
[ACTION] Clear the xLearn environment ...
[------------] Total time cost: 0.05 (sec)

2.3.7 Choose Optimization Method

In xLearn, users can choose different optimization methods by using opt parameter. For now, xLearn can support
sgd, adagrad, and ftrl method. By default, xLearn uses the adagrad method. For example:

param = {'task':'binary', 'lr':0.2, 'lambda':0.002, 'opt':'sgd'}
param = {'task':'binary', 'lr':0.2, 'lambda':0.002, 'opt':'adagrad'}
param = {'task':'binary', 'lr':0.2, 'lambda':0.002, 'opt':'ftrl'}

Compared to traditional sgd method, adagrad adapts the learning rate to the parameters, performing larger updates
for infrequent and smaller updates for frequent parameters. For this reason, it is well-suited for dealing with sparse
data. In addition, sgd is more sensitive to the learning rate compared with adagrad.

FTRL (Follow-the-Regularized-Leader) is also a famous method that has been widely used in the large-scale sparse
problem. To use FTRL, users need to tune more hyperparameters compared with sgd and adagrad.

2.3.8 Hyper-parameter Tuning

In machine learning, a hyper-parameter is a parameter whose value is set before the learning process begins. By
contrast, the value of other parameters is derived via training. Hyper-parameter tuning is the problem of choosing a
set of optimal hyper-parameters for a learning algorithm.

First, the learning rate is one of the most important hyperparameters used in machine learning. By default, this
value is set to 0.2 in xLearn, and we can tune this value by using lr parameter:

param = {'task':'binary', 'lr':0.2}
param = {'task':'binary', 'lr':0.5}
param = {'task':'binary', 'lr':0.01}

2.3. xLearn Python Package Guide 21

xlearn_doc Documentation, Release 0.4.0

We can also use the lambda parameter to perform regularization. By default, xLearn uses L2 regularization, and the
regular_lambda has been set to 0.00002:

param = {'task':'binary', 'lr':0.2, 'lambda':0.01}
param = {'task':'binary', 'lr':0.2, 'lambda':0.02}
param = {'task':'binary', 'lr':0.2, 'lambda':0.002}

For the FTRL method, we also need to tune another four hyper-parameters, including alpha, beta, lambda_1,
and lambda_2. For example:

param = {'alpha':0.002, 'beta':0.8, 'lambda_1':0.001, 'lambda_2': 1.0}

For FM and FFM, users also need to set the size of latent factor by using k parameter. By default, xLearn uses 4 for
this value:

param = {'task':'binary', 'lr':0.2, 'lambda':0.01, 'k':2}
param = {'task':'binary', 'lr':0.2, 'lambda':0.01, 'k':4}
param = {'task':'binary', 'lr':0.2, 'lambda':0.01, 'k':5}
param = {'task':'binary', 'lr':0.2, 'lambda':0.01, 'k':8}

xLearn uses SSE instruction to accelerate vector operation, and hence the time cost for k=2 and k=4 are the same.

For FM and FFM, users can also set the parameter init for model initialization. By default, this value is set to 0.66:

param = {'task':'binary', 'lr':0.2, 'lambda':0.01, 'init':0.80}
param = {'task':'binary', 'lr':0.2, 'lambda':0.01, 'init':0.40}
param = {'task':'binary', 'lr':0.2, 'lambda':0.01, 'init':0.10}

2.3.9 Set Epoch Number and Early-Stopping

For machine learning tasks, one epoch consists of one full training cycle on the training set. In xLearn, users can set
the number of epoch for training by using epoch parameter:

param = {'task':'binary', 'lr':0.2, 'lambda':0.01, 'epoch':3}
param = {'task':'binary', 'lr':0.2, 'lambda':0.01, 'epoch':5}
param = {'task':'binary', 'lr':0.2, 'lambda':0.01, 'epoch':10}

If you set the validation data, xLearn will perform early-stopping by default. For example:

import xlearn as xl

ffm_model = xl.create_ffm()
ffm_model.setTrain("./small_train.txt")
ffm_model.setValidate("./small_test.txt")
param = {'task':'binary', 'lr':0.2, 'lambda':0.002, 'epoch':10}

ffm_model.fit(param, "./model.out")

Here, we set epoch number to 10, but xLearn stopped at epoch 7 because we get the best model at that epoch (you
may get different a stopping number on your local machine):

Early-stopping at epoch 7
Start to save model ...

Users can set window size for early-stopping by using stop_window parameter:

22 Chapter 2. Link to the Other Helpful Resources

xlearn_doc Documentation, Release 0.4.0

param = {'task':'binary', 'lr':0.2,
'lambda':0.002, 'epoch':10,
'stop_window':3}

ffm_model.fit(param, "./model.out")

Users can also disable early-stopping by using disableEarlyStop() API:

import xlearn as xl

ffm_model = xl.create_ffm()
ffm_model.setTrain("./small_train.txt")
ffm_model.setValidate("./small_test.txt")
ffm_model.disableEarlyStop();
param = {'task':'binary', 'lr':0.2, 'lambda':0.002, 'epoch':10}

ffm_model.fit(param, "./model.out")

At this time, xLearn performed completed 10 epoch for training.

By default, xLearn will use the metric value to choose the best epoch if user has set the metric (-x). If not, xLearn
uses the test_loss to choose the best epoch.

2.3.10 Lock-Free Learning

By default, xLearn performs Hogwild! lock-free learning, which takes advantages of multiple cores of modern CPU
to accelerate training task. But lock-free training is non-deterministic. For example, if we run the following command
multiple times, we may get different loss value at each epoch:

import xlearn as xl

ffm_model = xl.create_ffm()
ffm_model.setTrain("./small_train.txt")
param = {'task':'binary', 'lr':0.2, 'lambda':0.002}

ffm_model.fit(param, "./model.out")

The 1st time: 0.449056
The 2nd time: 0.449302
The 3nd time: 0.449185

Users can set the number of thread for xLearn by using nthread parameter:

import xlearn as xl

ffm_model = xl.create_ffm()
ffm_model.setTrain("./small_train.txt")
param = {'task':'binary', 'lr':0.2, 'lambda':0.002, 'nthread':4}

ffm_model.fit(param, "./model.out")

xLearn will show the number of threads:

[------------] xLearn uses 4 threads for training task.
[ACTION] Read Problem ...

Users can also disable lock-free training by using disableLockFree() API:

2.3. xLearn Python Package Guide 23

xlearn_doc Documentation, Release 0.4.0

import xlearn as xl

ffm_model = xl.create_ffm()
ffm_model.setTrain("./small_train.txt")
ffm_model.disableLockFree()
param = {'task':'binary', 'lr':0.2, 'lambda':0.002}

ffm_model.fit(param, "./model.out")

In this time, our result are deterministic:

The 1st time: 0.449172
The 2nd time: 0.449172
The 3nd time: 0.449172

The disadvantage of disableLockFree() is that it is much slower than lock-free training.

2.3.11 Instance-wise Normalization

For FM and FFM, xLearn uses instance-wise normalizarion by default. In some scenes like CTR prediction, this
technique is very useful. But sometimes it hurts model performance. Users can disable instance-wise normalization
by using disableNorm() API:

import xlearn as xl

ffm_model = xl.create_ffm()
ffm_model.setTrain("./small_train.txt")
ffm_model.disableNorm()
param = {'task':'binary', 'lr':0.2, 'lambda':0.002}

ffm_model.fit(param, "./model.out")

Note that if you use Instance-wise Normalization in training process, you also need to use the meachnism in prediction
process.

2.3.12 Quiet Training

When using setQuiet() API, xLearn will not calculate any evaluation information during the training, and it just
train the model quietly:

import xlearn as xl

ffm_model = xl.create_ffm()
ffm_model.setTrain("./small_train.txt")
ffm_model.setQuiet()
param = {'task':'binary', 'lr':0.2, 'lambda':0.002}

ffm_model.fit(param, "./model.out")

In this way, xLearn can accelerate its training speed significantly.

24 Chapter 2. Link to the Other Helpful Resources

xlearn_doc Documentation, Release 0.4.0

2.3.13 DMatrix Transition

Here is a simple Python demo to show that how to use xLearn python DMatrix API. You can checkout the
demo data (house_price_train.txt and house_price_test.txt) from the path demo/regression/
house_price.

import xlearn as xl
import numpy as np
import pandas as pd

read file from file
house_price_train = pd.read_csv("house_price_train.txt", header=None, sep="\t")
house_price_test = pd.read_csv("house_price_test.txt", header=None, sep="\t")

get train X, y
X_train = house_price_train[house_price_train.columns[1:]]
y_train = house_price_train[0]

get test X, y
X_test = house_price_test[house_price_test.columns[1:]]
y_test = house_price_test[0]

DMatrix transition, if use field ,use must pass field map(an array) of features
xdm_train = xl.DMatrix(X_train, y_train)
xdm_test = xl.DMatrix(X_test, y_test)

Training task
fm_model = xl.create_fm() # Use factorization machine
we use the same API for train from file
that is, you can also pass xl.DMatrix for this API now
fm_model.setTrain(xdm_train) # Training data
fm_model.setValidate(xdm_test) # Validation data

param:
0. regression task
1. learning rate: 0.2
2. regular lambda: 0.002
3. evaluation metric: mae
param = {'task':'reg', 'lr':0.2,

'lambda':0.002, 'metric':'mae'}

Start to train
The trained model will be stored in model.out
fm_model.fit(param, './model_dm.out')

Prediction task
we use the same API for test from file
that is, you can also pass xl.DMatrix for this API now
fm_model.setTest(xdm_test) # Test data

Start to predict
The output result will be stored in output.txt
if no result out path setted, we return res as numpy.ndarray
res = fm_model.predict("./model_dm.out")

Note: Train from DMatrix is not support cross validation now, and we will add this feature soon later.

2.3. xLearn Python Package Guide 25

xlearn_doc Documentation, Release 0.4.0

2.3.14 Scikit-learn API for xLearn

xLearn can support scikit-learn-like api for users. Here is an example:

import numpy as np
import xlearn as xl
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

Load dataset
iris_data = load_iris()
X = iris_data['data']
y = (iris_data['target'] == 2)

X_train, \
X_val, \
y_train, \
y_val = train_test_split(X, y, test_size=0.3, random_state=0)

param:
0. binary classification
1. model scale: 0.1
2. epoch number: 10 (auto early-stop)
3. learning rate: 0.1
4. regular lambda: 1.0
5. use sgd optimization method
linear_model = xl.LRModel(task='binary', init=0.1,

epoch=10, lr=0.1,
reg_lambda=1.0, opt='sgd')

Start to train
linear_model.fit(X_train, y_train,

eval_set=[X_val, y_val],
is_lock_free=False)

Generate predictions
y_pred = linear_model.predict(X_val)

In this example, we use linear model to train a binary classifier. We can also create FM and FFM by using xl.
FMModel() and xl.FMModel() . Please see the details of these examples in (Link)

2.4 xLearn R Package Guide

xLearn R package guide is coming soon.

2.5 Guide of Hyper-parameters Tuning

Coming soon . . .

2.6 xLearn API List

This page gives the xLearn API List for the command line, Python package, and R package.

26 Chapter 2. Link to the Other Helpful Resources

https://github.com/aksnzhy/xlearn/tree/master/demo/classification/scikit_learn_demo

xlearn_doc Documentation, Release 0.4.0

2.6.1 xLearn Command Line Usage

For Training:

xlearn_train <train_file_path> [OPTIONS]

Options:

-s <type> : Type of machine learning model (default 0)
for classification task:

0 -- linear model (GLM)
1 -- factorization machines (FM)
2 -- field-aware factorization machines (FFM)

for regression task:
3 -- linear model (GLM)
4 -- factorization machines (FM)
5 -- field-aware factorization machines (FFM)

-x <metric> : The metric can be 'acc', 'prec', 'recall', 'f1', 'auc' for
→˓classification, and

'mae', 'mape', 'rmsd (rmse)' for regression. On defaurt,
→˓xLearn will not print

any evaluation metric information (only print loss value).

-p <opt_method> : Choose the optimization method, including 'sgd', adagrad',
→˓and 'ftrl'. On default,

xLearn uses the 'adagrad' optimization method.

-v <validate_file> : Path of the validation data. This option will be empty by
→˓default. In this way,

xLearn will not perform validation process.

-m <model_file> : Path of the model dump file. On default, the model file name
→˓is 'train_file' + '.model'.

If we set this value to 'none', the xLearn will not dump the
→˓model checkpoint.

-pre <pre-model> : Path of the pre-trained model. This can be used for online
→˓learning.

-t <txt_model_file> : Path of the TEXT model checkpoint file. On default, we do not
→˓set this option

and xLearn will not dump the TEXT model.

-l <log_file> : Path of the log file. xLearn uses '/tmp/xlearn_log.*' by
→˓default.

-k <number_of_K> : Number of the latent factor used by FM and FFM tasks. Using 4
→˓by default.

Note that, we will get the same model size when setting k to
→˓1 and 4.

This is because we use SSE instruction and the memory need to
→˓be aligned.

So even you assign k = 1, we still fill some dummy zeros from
→˓k = 2 to 4.

-r <learning_rate> : Learning rate for optimization method. Using 0.2 by default.
xLearn can use adaptive gradient descent (AdaGrad) for

→˓optimization problem, (continues on next page)

2.6. xLearn API List 27

xlearn_doc Documentation, Release 0.4.0

(continued from previous page)

if you choose AdaGrad method, the learning rate will be
→˓changed adaptively.

-b <lambda_for_regu> : Lambda for L2 regular. Using 0.00002 by default. We can
→˓disable the

regular term by setting this value to zero.

-alpha : Hyper parameters used by ftrl.

-beta : Hyper parameters used by ftrl.

-lambda_1 : Hyper parameters used by ftrl.

-lambda_2 : Hyper parameters used by ftrl.

-u <model_scale> : Hyper parameter used for initialize model parameters. Using 0.
→˓66 by default.

-e <epoch_number> : Number of epoch for training process. Using 10 by default.
→˓Note that xLearn will perform

early-stopping by default, so this value is just a upper
→˓bound.

-f <fold_number> : Number of folds for cross-validation (If we set --cv option).
→˓Using 5 by default.

-nthread <thread_number> : Number of thread for multiple thread lock-free learning
→˓(Hogwild!).

-block <block_size> : Block size for on-disk training.

-sw <stop_window> : Size of stop window for early-stopping. Using 2 by default.

-seed <random_seed> : Random Seed to shuffle data set.

--disk : Open on-disk training for large-scale machine learning
→˓problems.

--cv : Open cross-validation in training tasks. If we use this
→˓option, xLearn will ignore

the validation file (set by -t option).

--dis-lock-free : Disable lock-free training. Lock-free training can accelerate
→˓training but the result

is non-deterministic. Our suggestion is that you can open
→˓this flag if the training data

is big and sparse.

--dis-es : Disable early-stopping in training. By default, xLearn will
→˓use early-stopping

in training process, except for training in cross-validation.

--no-norm : Disable instance-wise normalization. By default, xLearn will
→˓use instance-wise

normalization in both training and prediction processes.

--no-bin : Do not generate bin file for training and test data file.
(continues on next page)

28 Chapter 2. Link to the Other Helpful Resources

xlearn_doc Documentation, Release 0.4.0

(continued from previous page)

--quiet : Don't print any evaluation information during the training
→˓and just train the

model quietly. It can accelerate the training process.

For Prediction:

xlearn_predict <test_file_path> <model_file_path> [OPTIONS]

Options:

-o <output_file> : Path of the output file. On default, this value will be set
→˓to 'test_file' + '.out'

-l <log_file_path> : Path of the log file. xLearn uses '/tmp/xlearn_log' by
→˓default.

-nthread <thread number> : Number of thread for multiple thread lock-free learning
→˓(Hogwild!).

-block <block_size> : Block size fot on-disk prediction.

--sign : Converting output result to 0 and 1.

--sigmoid : Converting output result to 0 ~ 1 (problebility).

--disk : On-disk prediction.

--no-norm : Disable instance-wise normalization. By default, xLearn
→˓will use instance-wise

normalization in both training and prediction processes.

2.6.2 xLearn Python API

API List:

import xlearn as xl # Import xlearn package

xl.hello() # Say hello to user

This part is for data
X is feautres data, can be pandas DataFrame or numpy.ndarray,
y is label, default None, can be pandas DataFrame\Series, array or list,
filed_map is field map of features, default None, can be pandas DataFrame\Series,
→˓array or list
dmatrix = xl.DMatrix(X, y, field_map)

model = create_linear() # Create linear model.

model = create_fm() # Create factorization machines.

model = create_ffm() # Create field-aware factorizarion machines.

model.show() # Show model information.

(continues on next page)

2.6. xLearn API List 29

xlearn_doc Documentation, Release 0.4.0

(continued from previous page)

model.fit(param, "model_path") # Train model.

model.cv(param) # Perform cross-validation.

Users can choose one of this two
model.predict("model_path", "output_path") # Perform prediction, output result to
→˓file, return None.
model.predict("model_path") # Perform prediction, return result by
→˓numpy.ndarray.

Users can choose one of this two
model.setTrain("data_path") # Set training data from file for xLearn.
model.setTrain(dmatrix) # Set training data from DMatrix for xLearn.

Users can choose one of this two
note: this type of validate must be same as train
that is, set train from file, must set validate from file
model.setValidate("data_path") # Set validation data from file for xLearn.
model.setValidate(dmatrix) # Set validation data from DMatrix for xLearn.

Users can choose one of this two
model.setTest("data_path") # Set test data from file for xLearn.
model.setTest(dmatrix) # Set test data from DMatrix for xLearn.

model.setQuiet() # Set xlearn to train model quietly.

model.setOnDisk() # Set xlearn to use on-disk training.

model.setNoBin() # Do not generate bin file for training and test data.

model.setSign() # Convert prediction to 0 and 1.

model.setSigmoid() # Convert prediction to (0, 1).

model.disableNorm() # Disable instance-wise normalization.

model.disableLockFree() # Disable lock-free training.

model.disableEarlyStop() # Disable early-stopping.

Parameter List:

task : {'binary', # Binary classification
'reg'} # Regression

metric : {'acc', 'prec', 'recall', 'f1', 'auc', # for classification
'mae', 'mape', 'rmse', 'rmsd'} # for regression

lr : float value # learning rate

lambda : float value # regular lambda

k : int value # latent factor for fm and ffm

init : float value # model initialize

alpha : float value # hyper parameter for ftrl
(continues on next page)

30 Chapter 2. Link to the Other Helpful Resources

xlearn_doc Documentation, Release 0.4.0

(continued from previous page)

beta : float value # hyper parameter for ftrl

lambda_1 : float value # hyper parameter for ftrl

lambda_2 : float value # hyper parameter for ftrl

nthread : int value # the number of CPU cores

epoch : int vlaue # number of epoch

fold : int value # number of fold for cross-validation

opt : {'sgd', 'agagrad', 'ftrl'} # optimization method

stop_window : Size of stop window for early-stopping.

block_size : int value # block size for on-disk training

2.6.3 xLearn R API

xLearn R API page is coming soon.

2.7 Large-Scale Machine Learning

This page shows how to use xLearn to solve large-scale machine learning problems. In recent years, challenges arise
with the fast-growing data. For “big-data”, we focus on datasets with potentially trillions of training examples, which
cannot fit into the memory of a single machine. Motivated by this, we design xLearn to solve large-scale machine
learning problems. First, xLearn can handle very large data (TB) on a single PC by using out-of-core learning. In
addition, xLearn can scale beyond billions of example across many machines to support distributed training by using
the parameter server framework.

2.7.1 Out-of-Core Learning

Out-of-core leanring refers to the machine learning algorithms working with data cannot fit into the memory of a single
machine, but that can easily fit into some data storage such as local hard disk or web repository. Your available RAM,
the core memory on your single machine, may indeed range from a few gigabytes (sometimes 2 GB, more commonly
4 GB, but we assume that you have 2 GB at maximum) up to 256 GB on large server machines. Large servers are
like the ones you can get on cloud computing services such as Amazon Elastic Compute Cloud (EC2), whereas your
storage capabilities can easily exceed terabytes of capacity using just an external drive (most likely about 1 TB but it
can reach up to 4 TB).

Actually, the ability to learn incrementally from a mini-batch of instances is key to out-of-core learning as it gurantees
that at any given time there will be only a small amount of data in the main memory. Choose a good size for the
mini-batch that balances relevancy and memory footprint could involve some tuning.

2.7. Large-Scale Machine Learning 31

xlearn_doc Documentation, Release 0.4.0

Out-of-Core Learning Using xLearn Command Line

Is’s very easy to perform out-of-core learning in xLearn command line, where users can just use the --disk option,
and xLearn will help you do all the other things. For example:

./xlearn_train ./big_data.txt -s 2 --disk

Epoch Train log_loss Time cost (sec)
1 0.483997 4.41
2 0.466553 4.56
3 0.458234 4.88
4 0.451463 4.77
5 0.445169 4.79
6 0.438834 4.71
7 0.432173 4.84
8 0.424904 4.91
9 0.416855 5.03

10 0.407846 4.53

In this example, xLearn can finish the training of each epoch in nearly 4.5 second. If you delete the --disk option,
xLearn can train faster.

./xlearn_train ./big_data.txt -s 2

Epoch Train log_loss Time cost (sec)
1 0.484022 1.65
2 0.466452 1.64
3 0.458112 1.64
4 0.451371 1.76
5 0.445040 1.83
6 0.438680 1.92
7 0.432007 1.99
8 0.424695 1.95
9 0.416579 1.96

10 0.407518 2.11

In this time, the training of each epoch will only spend nearly 1.8 seconds.

32 Chapter 2. Link to the Other Helpful Resources

xlearn_doc Documentation, Release 0.4.0

We can set the block size for on-disk training by using -block option. For example:

./xlearn_train ./big_data.txt -s 2 -block 1000 --disk

In this example, we set the block size to 1000MB. On default, this value will be set to 500.

Users can also use --disk option in the prediction task:

./xlearn_predict ./big_data_test.txt ./big_data.txt.model --disk

Out-of-Core Learning Using xLearn Python API

In Python, users can use setOnDisk API to perform out-of-core learning. For example:

import xlearn as xl

Training task
ffm_model = xl.create_ffm() # Use field-aware factorization machine

On-disk training
ffm_model.setOnDisk()

ffm_model.setTrain("./small_train.txt") # Training data
ffm_model.setValidate("./small_test.txt") # Validation data

param:
0. binary classification
1. learning rate: 0.2
2. regular lambda: 0.002
3. evaluation metric: accuracy
param = {'task':'binary', 'lr':0.2,

'lambda':0.002, 'metric':'acc'}

Start to train
The trained model will be stored in model.out
ffm_model.fit(param, './model.out')

Prediction task
ffm_model.setTest("./small_test.txt") # Test data
ffm_model.setSigmoid() # Convert output to 0-1

Start to predict
The output result will be stored in output.txt
ffm_model.predict("./model.out", "./output.txt")

We can set the block size for on-disk training by using block_size parameter.

Out-of-Core Learning Using xLearn R API

The R guide is coming soon.

2.7.2 Distributed Learning

As we mentioned before, for some large-scale machine challenges like computational advertising, we focus on the
problem with potentially trillions of training examples and billions of model parameters, both of which cannot fit

2.7. Large-Scale Machine Learning 33

xlearn_doc Documentation, Release 0.4.0

into the memory of a single machine, which brings the scalability challenge for users and system designer. For this
challenge, parallelizing the training process across machines has become a prerequisite.

The Parameter Server (PS) framework has emerged as an efficient approach to solve the “big model” machine learning
challenge recently. Under this framework, both the training data and workloads are spread across worker nodes, while
the server nodes maintain the globally shared model pa- rameters. The following figure demonstrates the architecture
of the PS framework.

As we can see, the Parameter Server provides two concise APIs for users.

Push sends a vector of (key, value) paris to the server nodes. To be more specific – in the distributed gradient descent,
the worker nodes might send the locally computed gradients to servers. Due to the data sparsity, only a part the
gradients is non-zero. Often it is desirable to present the gradient as a list of (key, value) pairs, where the feature index
is the key and the according gradient item is value.

Pull requests the values associated with a list of keys, which will get the newest parameters from the server nodes.
This is particularly useful whenever the main memory of a single worker cannot hold a full model. Instead, workers
prefetch the model entries relevant for solving the model only when needed.

The distributed training guide for xLearn is coming soon.

2.8 xLearn Demo

Copyright of the dataset belongs to the original copyright holder.

2.8.1 Criteo CTR Prediction

Predict click-through rates on display ads (Link)

Display advertising is a billion dollar effort and one of the central uses of machine learning on the Internet. However,
its data and methods are usually kept under lock and key. In this research competition, CriteoLabs is sharing a week’s
worth of data for you to develop models predicting ad click-through rate (CTR). Given a user and the page he is
visiting, what is the probability that he will click on a given ad?

You can find the data used in this demo in the path /demo/classification/criteo_ctr/.

The follow code is the Python demo:

import xlearn as xl

Training task

(continues on next page)

34 Chapter 2. Link to the Other Helpful Resources

https://www.kaggle.com/c/criteo-display-ad-challenge

xlearn_doc Documentation, Release 0.4.0

(continued from previous page)

ffm_model = xl.create_ffm() # Use field-aware factorization machine
ffm_model.setTrain("./small_train.txt") # Training data
ffm_model.setValidate("./small_test.txt") # Validation data

param:
0. binary classification
1. learning rate: 0.2
2. regular lambda: 0.002
3. evaluation metric: accuracy
param = {'task':'binary', 'lr':0.2,

'lambda':0.002, 'metric':'acc'}

Start to train
The trained model will be stored in model.out
ffm_model.fit(param, './model.out')

Prediction task
ffm_model.setTest("./small_test.txt") # Test data
ffm_model.setSigmoid() # Convert output to 0-1

Start to predict
The output result will be stored in output.txt
ffm_model.predict("./model.out", "./output.txt")

2.8.2 Mushroom Classification

This dataset comes from UCI Machine Learning Repositpry (Link)

This data set includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms in the
Agaricus and Lepiota Family (pp. 500-525). Each species is identified as definitely edible, definitely poisonous, or of
unknown edibility and not recommended. This latter class was combined with the poisonous one. The Guide clearly
states that there is no simple rule for determining the edibility of a mushroom; no rule like leaflets three, let it be for
Poisonous Oak and Ivy.

You can find a small portion of data used in this demo in the path /demo/classification/mushroom/.

The follow code is the Python demo:

import xlearn as xl

Training task
linear_model = xl.create_linear() # Use linear model
linear_model.setTrain("./agaricus_train.txt") # Training data
linear_model.setValidate("./agaricus_test.txt") # Validation data

param:
0. binary classification
1. learning rate: 0.2
2. lambda: 0.002
3. evaluation metric: accuarcy
4. use sgd optimization method
param = {'task':'binary', 'lr':0.2,

'lambda':0.002, 'metric':'acc',
'opt':'sgd'}

Start to train
(continues on next page)

2.8. xLearn Demo 35

https://archive.ics.uci.edu/ml/datasets/Mushroom

xlearn_doc Documentation, Release 0.4.0

(continued from previous page)

The trained model will be stored in model.out
linear_model.fit(param, './model.out')

Prediction task
linear_model.setTest("./agaricus_test.txt") # Test data
linear_model.setSigmoid() # Convert output to 0-1

Start to predict
The output result will be stored in output.txt
linear_model.predict("./model.out", "./output.txt")

2.8.3 Predict Survival in Titanic

This challenge comes from the Kaggle. In this challenge, we ask you to complete the analysis of what sorts of people
were likely to survive. In particular, we ask you to apply the tools of machine learning to predict which passengers
survived the tragedy. (Link)

You can find the data used in this demo in the path /demo/classification/titanic/.

The follow code is the Python demo:

import xlearn as xl

Training task
fm_model = xl.create_fm() # Use factorization machine
fm_model.setTrain("./titanic_train.txt") # Training data

param:
0. Binary classification task
1. learning rate: 0.2
2. lambda: 0.002
3. metric: accuracy
param = {'task':'binary', 'lr':0.2,

'lambda':0.002, 'metric':'acc'}

Use cross-validation
fm_model.cv(param)

2.8.4 House Price Prediction

This demo shows how to use xLearn to solve the regression problem, and it comes from the Kaggle. The Ames
Housing dataset was compiled by Dean De Cock for use in data science education. It’s an incredible alternative for
data scientists looking for a modernized and expanded version of the often cited Boston Housing dataset. (Link)

You can find the data used in this demo in the path /demo/regression/house_price/.

The follow code is the Python demo:

import xlearn as xl

Training task
ffm_model = xl.create_fm() # Use factorization machine
ffm_model.setTrain("./house_price_train.txt") # Training data

(continues on next page)

36 Chapter 2. Link to the Other Helpful Resources

https://www.kaggle.com/c/titanic
https://www.kaggle.com/c/house-prices-advanced-regression-techniques

xlearn_doc Documentation, Release 0.4.0

(continued from previous page)

param:
0. Binary task
1. learning rate: 0.2
2. regular lambda: 0.002
4. evaluation metric: rmse
param = {'task':'reg', 'lr':0.2,

'lambda':0.002, 'metric':'rmse'}

Use cross-validation
ffm_model.cv(param)

More Demo in xLearn is coming soon.

2.9 xLearn Tutorials

(1) FFM()

(2) FMpython

(3) Introductory Guide – Factorization Machines & their application on huge datasets (with codes in Python)

(4)

2.9. xLearn Tutorials 37

https://tech.meituan.com/deep_understanding_of_ffm_principles_and_practices.html
https://yq.aliyun.com/articles/374170
https://www.analyticsvidhya.com/blog/2018/01/factorization-machines/
https://zhuanlan.zhihu.com/p/42946318

	A Quick Example
	Link to the Other Helpful Resources

